CELL LINE CHARACTERISATION
Viral Safety from the Start for Biologicals Manufactured using CHO Cells
Key Regulatory Guidance Documents – Drives Industry Testing

- Points to Consider in the Characterization of Cell Lines Used to Produce Biologicals (1993)
- Points to Consider in the Manufacturing and Testing of Monoclonal Antibody Products for Human Use (1997)

- Q5A (R1): Quality of biotechnological products: Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin
- Q5B: Quality of biotechnological products: Analysis of the expression construct in cells used for production of rDNA derived protein products
- Q5D: Derivation and characterization of cell substrates used for production of biotechnological / biological products

- WHO Recommendations for the Evaluation of Animal Cell Cultures as Substrates for the Manufacture of Biological Medicinal Products and for the characterisation of Cell Banks. Final, 2011
Biologics manufacturing process:
Overview of testing requirements

Upstream Bioprocessing

- Research Cell Line
- Master Cell bank Production
- Working cell bank Production

Downstream Bioprocessing

- Unprocessed Bulk Product
- Purified Bulk Substance
- Final Biological Product

Bioreactor

Raw Material Testing

Cell line characterization

- Master cell bank
- Working cell bank
- End of production cells

Materials characterization

- Media components

Lot release testing:

- Unprocessed bulk
- Purified Bulk
- Final product

Clearance Testing:

- Evaluation of downstream purification process performed once process is defined
- Repeated if changes to process are made
Pre-bank Testing for Research Cell Lines

Minimum Testing for Release into cGMP Banking Facility
- Sterility
- Bacteriostasis and Fungistasis
- Mycoplasma (28-day culture method or mycoplasma PCR)

Additional Testing
Dependent on History of Cells; Worker Safety Considerations

- *In vitro* virus screening assay
- Identity

“Showstoppers” for a cell line: Positive sterility or positive Mycoplasma results or cross cell contamination (15% rate outside of regulated industry)
Cell Line Characterization in Brief

Identity
Verify species of cell

Genetic Stability
Expression Construct

Purity
Bacteria, Fungi
Mycoplasma (Spiroplasma)
Viruses (endogenous and adventitious)
Cell Line Characterization

Identity
- Verify species of cell

Genetic Stability
- Expression Construct

Purity
- Bacteria, Fungi
- Mycoplasma (Spiroplasma)
- Viruses (endogenous and adventitious)
Identity testing of Cell Banks

Required to confirm the species origin of cell lines

Genotypic approaches:
- DNA fingerprinting
- Cytochrome c oxidase subunit I (CO1) PCR and barcoding

Phenotypic approaches:
- Isoenzyme testing has been used extensively previously however due to unreliable supply issues, this service is no longer available

Karyology
- Recommended for new cell lines and for diploid cell lines, but not necessary for well characterized cell lines such as CHO, Sp2/0, NS0

One of the above methods is performed on MCB and EOP/CAL
CO1 Barcode Assay

- Conserved mitochondrial coding region
 - Lack of introns
 - Limited exposure to recombination
 - Haploid inheritance

- Universal primers for this gene are robust, enabling recovery of its 5’ end from all animal phyla

- CO1 possesses a greater range of phylogenetic signal than any other mitochondrial gene, allowing for clear species identification

- CO1 analysis is the method of choice for taxonomic identity and for cell line identity at cell culture collections

- Greater number of reference species, minimal subjectivity relative to isozyme analysis
Cell Line Characterization

Identity

- Verify species of cell

Genetic Stability

- Express Construct

Purity

- Bacteria, Fungi
- Mycoplasma (Spiroplasma)
- Viruses (endogenous and adventitious)
Genetic Stability Testing

ICH Q5B:

Analysis of the Expression Construct in Cells used for Production of rDNA Derived Protein Products

- Typically performed in Phase 3 using cells from MCB and EPC/CAL
- Verifies that expression system has not undergone any changes that would impact integrity of the product
- Molecular studies required to verify
 - Correct sequence made and incorporated into host cell
 - Structure and copy # maintained to end of production
Requirements for Genetic Stability

- Sequence analysis of the expressed gene*
- Sequence analysis of 5’ and 3’ flanking regulatory regions of recombinant gene*
- Copy number determination (qPCR)*
- Restriction enzyme digest analysis*
- Number of integration sites (by Fluorescence In Situ Hybridization; FISH)
- Analysis of the expressed gene mRNA size and abundance (e.g., northern blotting); typically only required for less well established cell lines

Test performed on MCB AND EOP/CAL
Cell Line Characterization

Identity
- Verify species of cell

Genetic Stability
- Expression Construct

Purity
- Bacteria, Fungi
- Mycoplasma (Spiroplasma)
- Viruses (endogenous and adventitious)
Compendial Sterility Test

- Methods are harmonized globally
 - Direct Inoculation
 - Membrane Filtration

- Media
 - TSB media (total aerobes) – Incubated at 20-25°C
 - THIO media (microaerophiles/anaerobes) – Incubated at 30-35°C

- Observed for microbial growth on day 3, 4 or 5, day 7 or 8, and day 14.

- Assay is performed on 1% of total bank, but not less than 2 vials

Sterility positive rate <1% with no false positives across >1000 samples tested.
Bacteriostasis and Fungistasis

- Low level of challenge microbe spiked into sample and monitored for growth
- B&F is recommended prior to performing sterility assay to determine that the sample is free of any inhibiting factors that may give a false positive result

Sterility assay is performed on MCB, WCB and EOP/CAL

B&F is performed on MCB and EOP/CAL
Cell Line Characterization

Identity
- Verify species of cell

Genetic Stability
- Expression Construct

Purity
- Bacteria, Fungi
- Mycoplasma (Spiroplasma)
- Viruses (endogenous and adventitious)
Mycoplasma Testing

Culture based method is 28 days in duration

Culture based include three components:

- Indicator culture cells (3-7 days duration)
- Direct cultivation onto agar plates (14 days duration)
- Incubation in broth followed by agar subculture (28 days duration)

Qualification (Mycoplasmastasis) – Mycoplasma spiked into test sample and observed for any inhibition of mycoplasma outgrowth.

USP/EP requirement and good scientific practice

Mycoplasma positive results at BioReliance for past three years were <0.1%
Mycoplasma Testing – Governing Regulatory Guidelines

<table>
<thead>
<tr>
<th>Source</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>21CFR Part 610.30, FDA, CBER, Guidance 2010</td>
<td>Live and inactivated virus vaccines</td>
</tr>
<tr>
<td>FDA, CBER, Points To Consider, 1993</td>
<td>Licensed biological products e.g. viral vaccines, monoclonal antibodies, immunological modulators, interferon and other cytokines, erythropoietin, growth factors and similar products</td>
</tr>
<tr>
<td>European Pharmacopoeia, section 2.6.7</td>
<td>All biotechnological products and associated materials</td>
</tr>
<tr>
<td>Japanese Pharmacopoeia XV, section 14 – Supplement 2</td>
<td>Cell substrates used for manufacture of biotechnological/biological products</td>
</tr>
<tr>
<td>United States Pharmacopeia, <63></td>
<td>All biotechnological products and associated materials</td>
</tr>
</tbody>
</table>

Worldwide regulatory documents
Regulatory View of NATs For Mycoplasma

European Pharmacopoeia
- Direction on application of validated NAT methods for detection of mycoplasma
- Guidelines on validation expectations
 - Specificity
 - Detection limit
 - Robustness
 - Comparability testing

United States Pharmacopoeia
- Validated NAT test may be applied if shown to be comparable to culture methods

Japanese Pharmacopoeia
- Recent update is more in line with EP
Cell Line Characterization in Brief

<table>
<thead>
<tr>
<th>Identity</th>
<th>Genetic Stability</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify species of cell</td>
<td>Expression Construct</td>
<td>Bacteria, Fungi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mycoplasma (Spiroplasma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viruses (endogenous and adventitious)</td>
</tr>
</tbody>
</table>
Rationale for virus assays

To detect unknown and a wide range of possible contaminants must utilize a number of different assays

- **Broad specificity assays**
 - *in vitro* and *in vivo* virus assays, electron microscopy

- **Assays to detect contaminants associated with specific species**
 - Rodent, bovine, porcine, human viruses

- **Assays to detect retroviruses**
 - Infectivity assays
 - Molecular biology assays (PCR)
 - Biochemical assays (reverse transcriptase)
 - Morphological assays (electron microscopy)

- **Assays to detect specific viruses**
 - Molecular biology assays (PCR)
In Vitro *Adventitious Virus Assay*

Test Article

Day 14
HA/HAD
Passage conditioned medium

Day 28
HA/HAD
End of Assay

Cell Monolayer

Passaging of cells

Common Detector Cells

- MRC-5 (Human Diploid)
- Vero (Simian)
- Same Species and Tissue - SP2/0, BHK, CHO, NS0 etc.
Detection of Adventitious Viruses Using the In Vitro Adventitious Virus Assay

20 Years of BioReliance (US) Testing – Summary

Cell Lines (MCB, WCB, EPC): No viruses detected
For non-CHO cell production: No viruses detected

The following viruses were detected in CHO unprocessed bulk:
- Reovirus – two positive studies; attributed to serum*
- Cache Valley virus – four positive studies; attributed to serum*
- Vesivirus 2117 – two positive studies

For the past 15 years of BioReliance testing (over 15,000 in vitro viral assays), there were only eight positive studies for adventitious viruses, which represent 0.05% of assays performed.

*Elimination of fetal bovine serum from the manufacturing process or use of gamma-irradiated serum mitigates the risk of experiencing an adventitious viral contamination.
Broad specificity in vitro virus assays

In vitro virus assays

- Use selected cell lines permissive to a wide variety of viruses
- Endpoints for viral detection may be
 - Cytopathic effects (CPE)
 - Hemagglutination or hemadsorption
 - IFA

Advantages:

- Screens for a broad range of viruses
- Low Limit of Detection (LOD), approx 1 TCID$_{50}$

Limitations:

- Only detect viruses that
 - Can grow in culture
 - Cause CPE
- Cultures susceptible to toxicity as well as viral effects
- Practical limitations in the number of detector cells lines used
In Vivo Adventitious Virus Screening Assay

- *In vivo* adventitious virus assay – General screen (28 day) using suckling and adult mice and embryonated eggs to reveal viruses that cannot grow in cell cultures- additional species may be used depending on nature and source of cell line (Guinea pigs frequently used for FDA submissions)

- Required for viral vaccines and at least one time on UPB for other biologics

- Endpoint = morbidity and mortality

In over 20 years of testing (thousands of studies) no adventitious virus was detected in this in vivo viral screen.
Viruses Detected Using In Vivo Assay

- **Suckling mice:**
 - *Human viruses*: alphaviruses, arboviruses, arenaviruses, bunyaviruses, coxsackieviruses types A and B, echoviruses, flaviviruses, herpesviruses, polioviruses, rabies

- **Adult mice:**
 - *Human viruses*: Coxsackieviruses types A and B, flaviviruses, rabies virus
 - *Murine viruses*: Lymphocytic choriomeningitis virus (LCMV)

- **Guinea pigs:**
 - Filoviruses, paramyxoviruses, reoviruses
 - *Mycobacterium tuberculosis*

- **Embryonated eggs:**
 - *Allantoic route*: alphaviruses, orthomyxoviruses, paramyxoviruses, vesiculoviruses
 - *Yolk sac route*: Herpesviruses, poxviruses, rhabdoviruses
In Vivo *Species-Specific Assays – Antibody Production Tests*

Mouse viruses screened in MAP
- Ectromelia
- GDVII
- Lactate Dehydrogenase Virus (LDV)
- Lymphocytic Choriomeningitis
- Hantaan Virus
- Mouse Minute Virus (MMV)
- Mouse Parvovirus (MPV)
- Mouse Adenovirus
- Mouse Hepatitis Virus (MHV)
- Pneumonia Virus of Mice (PVM)
- Polyoma
- Sendai
- Epizootic Diarrhea of Infant Mice (EDIM)
- Mouse Salivary Gland Virus (Mouse Cytomegalovirus) (MCMV)
- Reovirus Type 3
- Mouse K Virus
- Mouse Thymic Virus (MTV)

Historical Note: The MAP assay was used back in the late 90’s at BREL to confirm MMV for Genentech’s CHO reactor “crashes”.
Broad specificity in vivo virus assays

In vivo virus assays
- Inoculate mice (adult/suckling), guinea pigs, embryonated eggs
 - Viruses detected by appearance of disease symptoms (animals), loss of viability (eggs) or by hemagglutination assay (egg fluids)
- Antibody production assays in mice/rat/hamster
 - Serum screened by ELISA for production of virus-specific Abs

Advantages
- Broad specificity methods that can detect viruses that don’t grow in culture
- Sensitive

Limitations
- Ethical concerns
- Toxic effects of test material
- Lengthy assay
In Vitro 9CFR Bovine and Porcine Virus Assay

Basis

- Detection of wide variety of bovine and porcine viruses based upon development of cytopathology, hemadsorption of red blood cells, and specific immunofluorescent staining

Procedure

- Inoculate serum or clarified cell lysate into indicator bovine turbinate (BT) or porcine testicular (PT) cells and VERO cells
- Monitor microscopically for 21 days, subculturing twice
- Test for hemadsorption
- Stain fixed cells with anti-bovine or anti-porcine virus fluorescein-labeled antibodies

During the past three years at BioReliance approximately 50% of the 9CFR bovine virus screening assays performed on bovine serum samples yielded positive IFA results for non-cytopathic BVDV (Bovine Viral Diarrhea Virus)
Bovine and Porcine Viruses Specifically Screened for in the 9CFR Assays

- Bovine viral diarrhea virus (BVDV)
- Bovine adenovirus type 5 (BAV5)
- Bovine parvovirus (BPV)
- Bluetongue virus (BTV)
- Bovine respiratory syncytial virus (BRSV)
- Reovirus type 3 (REO)
- Rabies virus
- Infectious bovine rhinotracheitis virus (IBR)
- Porcine parvovirus (PPV)
- Transmissible gastroenteritis virus (TGEV)
- Porcine adenovirus (PAV)
- Bovine parainfluenza virus type 3 (PI3)
Rodent Cells and Retroviral Particles

- Rodent cell lines produce endogenous retrovirus-like (RV) particles (types A and C).
- Mouse cells are inherently capable of producing infectious mouse RV. Positive testing results may be obtained with mouse cell lines (e.g., NS0).
- CHO cell lines express defective RV particles. To date, it has not been shown that hamster cell lines can express infectious RV.
- There is a risk of unknown endogenous retroviruses that might be present.
- A variety of assays are used, depending on the cell substrate and the associated risk of RV.
Retrovirus Assays

Infectivity assay

Infectious retrovirus detected through a cell culture assay

Electron Microscopy

Retroviral particles are visualized and enumerated using transmission electron microscopy

Reverse transcriptase assays

Detection of reverse transcriptase activity using tritium incorporation into a template or through product amplification assays (PERT)
Virus-Specific Assays (PCRs)

- PCR for MMV (mouse parvovirus) for CHO cell lines
- PCR for Vesivirus 2117 for CHO cell lines
- Bovine polyoma virus (PCR) expected by EP reviewers; Bovine polyoma infects human and simian cell lines; no evidence for infecting CHO
- Human virus panel
Viral Safety Testing in US and EU

<table>
<thead>
<tr>
<th>Stage</th>
<th>IMP in EU, Phase 1, 2 & 3</th>
<th>IND in US (Standard Products)</th>
<th>IND in US (Orphan & S/LT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB</td>
<td>Full characterization as per ICH Q5A</td>
<td>Full characterization as per ICH Q5A; can prioritize assays (e.g., postpone IVV, but not IVT & TEM)</td>
<td>Reduced: Sterility, mycoplasma, IVT (28 d)</td>
</tr>
<tr>
<td>WCB</td>
<td>Minimal Testing: e.g., identity, sterility, mycoplasma, IVT (28d)</td>
<td>Minimal Testing: e.g., identity, sterility, mycoplasma, IVT (28d)</td>
<td>N/A</td>
</tr>
<tr>
<td>EOP/CAL</td>
<td>Not required if BH tested as below</td>
<td>Not required for phase 1; required for phase 3</td>
<td>Not required</td>
</tr>
<tr>
<td>BH</td>
<td>Bioburden, mycoplasma, in vitro, MMV, TEM (3 lots)</td>
<td>Bioburden, mycoplasma, IVT, PCR for at risk viruses, TEM (3 lots, but can initiate IND with 1 lot)</td>
<td>Bioburden, mycoplasma, IVT not required, TEM?</td>
</tr>
</tbody>
</table>
Conclusion

- Companies need to review their testing plan carefully to assure it meets regulatory requirements and expectations.

- There is variation with reviewers’ opinions on testing. Since the reviewer has the final say, we recommend obtaining reviewer approval of the testing plan early in a company’s program. The pre-IND meeting is a good time for that discussion.
谢谢 - Xièxiè